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Abstract. Growing human populations and destruction of natural habitats intensify human-wildlife 
conflicts, particularly with wild boar (Sus scrofa). To minimize the conflicts and undertake mitigation 
measures predicting conflict risk zones and identifying the predictors is necessary. Accordingly, we 
conducted a study by collecting secondary data on conflicts across forest divisions of Tamil Nadu 
from 2016 to 2021. Of the 3301 incidents we collected, 94.4% were related to crop damage. Using 
ensemble modelling we predicted a conflict risk zone of approximately 79,753 km2, which represents 
61.34% of the total area of Tamil Nadu. Variables such as the human modification index and mean 
annual temperature contributed the most to model performance. Our model indicates that areas with 
cultivated lands close to the fringes of forests, especially in regions with a higher degree of human 
modification, have greater levels of conflict risk. The study’s outcome will help managers undertake 
proactive measures to mitigate HWBC in Tamil Nadu.
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Introduction

Human population growth and subsequent develop-
ment near natural habitats have substantially increased 
human-wildlife conflict (HWC) (Karami and Tavakoli 
2022; Nhyus 2016). HWC is a much-discussed term that 
occurs when the needs of humans and wildlife overlap in 
space or time, resulting in a negative interaction between 
both (Mekonen 2020; Dickman 2010; Naughton-Treves 
et al. 2003). The rapid increase of HWC has emerged 
as a critical threat to global biodiversity conservation 
(Mekonen 2020; Karanth et al. 2018; Amaja et al. 2016). 
HWC can take various forms, including crop damage, 
property destruction, and human and animal casualties 
(Shameer et al. 2024). With the increased dependency 
of humans on natural resources and the overexploitation 
of natural habitats, the incidents of HWC are likely to 
increase, making it a complex issue to address (Rawat 
et al. 2021; Sharma et al. 2021; Woodroffe et al. 2005). 
HWC is driven by multiple factors, including habitat 
loss and fragmentation, changes in land use, forest 
cover, agricultural practices, human encroachment into 
wildlife habitat, and poaching (Sharma et al. 2020). It 
can lead to interactions between humans and wildlife 
(Treves et al. 2009) and be influenced by social and 
economic factors, such as overwhelming population 

growth, poverty, and lack of alternative livelihood op-
tions (Nyhus 2016). Understanding the complex drivers 
of human-wildlife conflict is crucial for developing ef-
fective management strategies that foster coexistence 
between humans and wildlife while ensuring the welfare 
of biodiversity and the well-being of local communities 
(Treves and Bruskotter 2014).
Species distribution modelling (SDM) is one of the most 
potent tools in conservation planning, and researchers 
have been implementing it in various studies (Abedin 
et al. 2024; Rocha et al. 2024). The ensemble modelling 
framework suggested by Araujo and New (2007) has 
gained popularity for predicting reliable SDMs. Ensem-
ble modelling is a powerful approach for improving the 
accuracy and robustness of species distribution models 
(SDMs), which involves fitting multiple models using 
different algorithms, predictors, or modelling techniques 
and combining the predictions using a weighted average 
or other aggregation methods. This approach can help 
reduce the effects of overfitting, account for model uncer-
tainty, and capture the complexity of the relationship be-
tween species and the environment. Ensemble modelling 
has been proven to improve the accuracy and reliability 
of SDMs in many applications, such as predicting the 
distribution of species, modelling the effects of climate 
change on biodiversity, identifying priority areas for 
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conservation, and predicting HWC (Karami and Tavakoli 
2022; Ahmed et al. 2021; Mpakairi et al. 2018). 
The wild boar is a generalist species known for its flex-
ibility and prolific reproduction (Lowe et al. 2000). It 
is distributed over many parts of the world and tends 
to exploit locally abundant food sources (Schley and 
Roper 2003). This behaviour results in conflicts with 
humans when they come into contact with crops or 
other human-dominated areas (Schley et al.  2003). 
This has made wild boar a significant economic threat 
in many parts of the world. Human-wild boar conflict 
(HWBC) is an evolving issue that has attracted increas-
ing attention recently. HWBC is a critical issue in India, 
particularly in the southern parts of the country, which 
makes it of utmost importance to address it to minimize 
its adverse effects. The increasing wild boar population 
without proportional growth in forest areas has resulted 
in HWBC. Several studies have recognized habitat 
loss and fragmentation, urbanization, and agricultural 
practices as the fundamental drivers of HWBC (Milda 
et al. 2022; Chauhan et al. 2009).  
Predicting the conflict risk zones and identifying the 
predictors of HWBC can help managers develop effec-
tive mitigation strategies. Accordingly, we conducted 
a study on HWBC in Tamil Nadu to i) understand the 
distribution of HWBCs and their temporal pattern, 
ii) identify the drivers of HWBC, and iii) predict the 
conflict risk zones using ensemble modelling.

Materials and Methods

Study area 
The state of Tamil Nadu (approximately 11.1271° N 
and 78.6569° E) (Figure 1) is located in southernmost 
India. As mentioned in the Indian State of Forest Re-
port 2021, Tamil Nadu constitutes 26,451 km2 of for-
est cover, about 17.41% of the state’s total area. This 
state witnesses an average rainfall of about 950 mm to 
1170 mm, and the annual average temperature ranges 
from approximately 19 °C and 37 °C (Shameer et al. 
2024). Since Tamil Nadu experiences various types of 
climatic conditions that support a diverse range of forest 
types, starting with tropical wet evergreen forest, tropi-
cal semi-evergreen forest, and ending with sub-tropical 
hill forest and montane wet temperate forest, these many 
varied forests hold a diverse range of flora and fauna. 

Data collection
We collected data between 2016 and 2021 on HWBC 
incidents across the forest divisions of Tamil Nadu 
from both secondary sources and field visits. As part of 
the Tamil Nadu Forest Department conflict mitigation 
plan, G.O (Ms). No.141 and G.O (D). No.14 conflict 

records are collected and maintained in forest divi-
sions. These data had information about HWBC, such 
as date of occurrence, latitude and longitude, type of 
conflict (i.e., crop damage, human injury, and human 
death), crop name, and compensation details. While 
visiting the conflict location, we collected information 
about the frequency, terrain information, and any other 
ground factors that could influence HWBC in the re-
gion. As most of the data were related to crop damage, 
we segregated the specific data performed analysis and 
ensemble modelling.
 
Data thinning 
We performed a spatial thinning to reduce the spatial 
autocorrelation among independent conflicts. Spatial 
thinning stands as the best method to reduce spatial 
sampling biases. This strategy involves the selective 
removal of data while maintaining crucial information to 
mitigate the influence of sampling biases. The package 
“spThin” (Aiello-Lammens et al. 2015) in R (R Core 
Team 2023) employs a randomization approach and 
returns a maximum number of records within a thinning 
distance while analysed with sufficient iterations. We 
removed the conflict records that exhibited spatial auto-
correlation and consolidated multiple occurrences.
 
Environmental variables
We chose three bioclimatic variables, Annual Mean Tem-
perature (Bio1), Isothermality (Bio3), and Annual Pre-
cipitation (Bio12), downloaded from Worldclim (http://
www.worldclim.org) (Hijmans et al. 2005). We used the 
SRTM 30 m digital elevation model (DEM) (Farr et al. 
2007) and calculated the terrain ruggedness index (TRI) 
using the R packages raster (Hijmans 2023) and rgdal 
(Bivand et al. 2023). We further extracted the layers such 
as forest cover, croplands, and build-up areas from the 
ESA World Cover 2022 (Zanaga et al. 2022) database 
in 30 m resolution using httr (Wickham 2023) and raster 
packages. Further, we converted these rasters to polygons 
and calculated their Euclidean distances using the pack-
age rgeos (Bivand and Rundel 2021). The Normalized 
Difference Vegetation Index (NDVI) was downloaded 
from the MODIS (modis.gsfc.nasa.gov) database, and 
its average was calculated from 2016–2021 of our study 
period using the raster package. The water layers were 
downloaded from Humanitarian OpenStreetMap (https://
data.humdata.org/), and their Euclidean distance was 
calculated. We further downloaded Global Human Modi-
fication of Terrestrial Systems (HMI), v1 (2016), which 
provides a cumulative measure of the human modification 
of terrestrial lands across the globe at a 1-km resolution 
(Kennedy et al. 2020). All the environmental covariates 
were rescaled to 1 km2 resolution using the raster pack-
age in R. These environmental variables were tested for 
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multicollinearity using Pearson correlation coefficient 
analysis with a threshold of 0.75 in R. We did not find any 
collinearity between the variables; hence, all the variables 
were retained and used for the modelling.

Modelling procedure
The “sdm” package (Naimi and Araujo 2016) provides 
multiple combinations of algorithms for ensemble mod-
elling. This enables users to create a set of candidate 
models, evaluate their performance, and combine them 
into an ensemble using various methods such as boosting 
bagging or random forests. Using the same package, we 
generated pseudo-absence records equal to our presence 
records (data obtained after thinning). In studies seeking 
to identify unsurveyed sites with a high probability of 
occurrence for species, pseudo-absences that are more 
likely to be true absences help improve model accuracy 
(Barbet-Massin et al. 2012). We employed nine candidate 
models available in the sdm package, including RF (Ran-
dom Forest), MDA (Mixture Discriminant Analysis), 
RPART (Recursive Partitioning and Regression Trees), 
MAXLIKE (Maximum Likelihood), MARS (Multivari-
ate Adaptive Regression Splines), BRT (Boosted Regres-
sion Trees), GLM (Generalized Linear Model), FDA 
(Flexible Discriminant Analysis), and GAM (Generalized 
Additive Model), to build an ensemble model. Out of the 
865 conflict occurrence records, we randomly selected 
30% (n = 259) to test the accuracy of the models, while 
the remaining 70% (n = 606) was used for training. This 
procedure trains the model with enough data (70%) to 
ensure stability, reducing the risk of overfitting. The test-
ing data (30%) is used to evaluate the model’s accuracy 
on unseen data. We repeated this process five times to 
calculate the mean values of sensitivity, specificity, True 
Skill Statistics (TSS), kappa and Area under the Curve 
(AUC), thereby evaluating the accuracy of the models. 
To ensure unbiased predictive accuracy with low 
variance, we employed the bootstrapping replication 
method, following previous studies (Ahmed et al. 
2021; Harrell et al. 1996; Lima et al. 2019), to run the 
individual algorithms. The independent algorithms were 
then assembled using the weighted averaging method, 
with TSS as the evaluation statistic and a threshold 
value of maximum sensitivity and sensitivity. We 
used QGIS 3.36.1 (QGIS Development Team 2024) to 
visualise and generate the final map from the ensemble 
model output. The model’s output was divided into four 
distinct categories to highlight the conflict risk zones: 
“Very Low Risk” (between 0 and 0.25), “Low Risk” 
(0.25–0.5), “High Risk” (0.5–0.75), and “Very High 
Risk” (0.75–1). We calculated the area of the conflict 
risk zones by adding up the areas designated as “High 
Risk” and “Very High Risk”.

Figure 1. The study area map indicates the conflict locations 
(red dots) and forest reserves (green areas).

Results

Data profile of HWPC
We obtained 3293 independent (based on different dates 
of occurrence) crop damage events from the data. After 
data thinning, the occurrence records decreased from 
3293 to 623 (Figure 1). The Dharmapuri (n = 678) and 
Thrivullavur (n = 550) forest divisions had the highest 
crop damage (Figure 2).

Temporal pattern of HWPC
Our data showed that 2020 saw the highest number of 
crop damage incidents (Figure 3). Temporal analysis 
showed crop damages were the highest in August to 
December (Figure 4). April, May, and June had com-
paratively fewer crop damages. The crop-wise temporal 
analysis showed that the banana crop had the highest 
number of conflict incidents, specifically from Novem-
ber to March. Wild boars mostly damage sugarcane in 
January, but the trend can continue from September until 
March. Tapioca, on the other hand, can be damaged from 
June to September. They prefer groundnuts mainly in 
the month(s) of August to October, but the conflict can 
occur from August until March. Crop damage incidents 
of corn can start in October and last until January. Paddy 
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Figure 2. Frequency distribution of conflicts across forest divisions. 

Figure 3. Year-wise distribution of conflicts across forest divisions.

Figure 4. Temporal distribution of conflicts across forest divisions for specific crops. 
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Figure 5. Frequency of HWBC categorised by different crops.

Figure 6. Predicted risk zone of HWBC using ensemble 
modelling. 

crops were damaged from November to March, while 
maize was damaged from October to January. Ground 
nuts, paddy, and maize were major crops susceptible to 
damage (Figure 5).

Model performance and prediction
Supplementary Table 1 depicts the performance of 
models using different evaluation techniques. The top-
performing model was RF, with an AUC of 0.92, TSS 
of 0.70 and Kappa of 0.70. We also evaluated model ac-
curacy using the receiver operator characteristics (ROC) 
curve, which shows the proportion of the true presence 
and absence rates. Supplementary Figure 1 shows all 
models’ ROC curves, indicating RF as the best model. 
Of the ten predictor variables, the human modification 
index and mean annual temperature contributed the most 
to model performance (Supplementary Figure 2). The 
partial response curves of bio1 indicate that the conflict 
risk peaks at moderate temperatures. Bio12 suggests 
that regions with moderate rainfall experience higher 
conflicts. Similarly, Bio3 indicates an increased risk in 
regions with more stable temperatures. The distance to 
built-up areas shows that conflicts increase at mid-range 
distances. Distance to cropland indicates that conflict 
risk decreases with increasing distance. Elevation shows 
an apparent decline in risk, as shown by rising values. 
Distance to forest cover indicates higher risk at mid-
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range distances. HMI suggests that areas with more 
remarkable human alteration are prone to conflict risk. 
However, NDVI didn’t reflect any pattern. TRI and 
distance to water reveal that flatter terrains near water 
sources are more prone to conflicts (Supplementary Fig-
ure 3).  The ensemble model predicts a conflict risk zone 
covering approximately 79,753 km2, which represents 
39.67% of the total area of Tamil Nadu. These risk zones 
were mainly located between the northeast, northwest, 
and south-western parts of Tamil Nadu (Figure 6).

Discussion

Crop damage has emerged as a significant global con-
cern in HWBC (Boyce et al. 2020; McKee et al. 2020; 
Fischer et al. 2019; Lombardini et al. 2016; Chauhan 
et al. 2009). Wild boar has experienced a population 
increase due to the absence of natural predators, coupled 
with favourable conditions created by human activities 
near their habitats (Ickes 2001; Lewis et al. 2019; Waith-
man et al. 1999). These factors give them easy access to 
food and water sources in human settlements near forest 
edges (Milda et al. 2022). A consistent pattern emerged 
in the recorded instances of crop damage, with certain 
crops that they preferred significantly more. The primary 
targets were Groundnut, paddy, sugarcane, tapioca, 
maize, and banana. These crops, commonly cultivated in 
open fields, are particularly vulnerable to wild boar dam-
age due to their accessibility and the proficiency of wild 
boars as diggers. A study by Vasudeva et al. (2015) also 
confirmed these crops’ susceptibility to damage by wild 
boars as diggers. The temporal analysis to understand 
the seasonal patterns of crop damage revealed interest-
ing trends. For instance, the banana crop exhibited the 
highest damage from November to March, aligning with 
its typical harvesting time. Certain crops grow in seasons 
corresponding to wild boars’ active foraging pattern. It 
is important to note that these temporal patterns provide 
insights into the crop preferences and raiding behaviour 
of wild boars. They help in understanding the peak 
periods of crop vulnerability and can aid in developing 
targeted mitigation strategies. 
Previous studies conducted by Karami and Tavakoli 
(2022) and Ficetola et al. (2014) have demonstrated the 
effectiveness of species distribution models (SDMs) 
in accurately predicting wild boar conflicts. The find-
ings in this study highlight the reliability of SDMs as 
a robust approach for predicting the risk of HWBC. 
Therefore, we can consider our modelling approach as 
an exemplary method for predicting and assessing the 
potential risks associated with HWBC. From ensemble 
modelling, it is clear that certain variables significantly 
contributed to the model’s performance. The predictor 

variables, such as human modification index, mean an-
nual temperature, elevation, and distance to cropland, 
stood out as having the highest contribution and influ-
ence in the HWBC model (Supplementary Material 2). 
These variables likely played a crucial role in influenc-
ing the occurrence and intensity of HWBC. 
The partial response curve indicates that the human 
settlements near wild boar habitats or potential forag-
ing areas will likely have increasing trends in HWBC. 
Several studies indicate that crop damage by wild boar is 
usually happening at the forest fringes (Liu et al. 2019; 
Thurfjell et al. 2015; Jin et al. 2021). The cultivated 
lands near forest fringes provide a favourable habitat 
for wild boar. They adapt well to such heterogeneous 
landscapes, utilising natural and human-altered environ-
ments (Johann et al. 2020). The contribution of DEM 
provides information about topographical features that 
influence wild boar movement patterns and their acces-
sibility to human-dominated areas. 
There is a strong correlation between temperature 
and the distribution of wild boars. McClure et al. 
(2015) noted that the distribution of wild boar was 
most strongly limited by cold temperatures, and a 
high probability of occurrence was associated with 
frequent high temperatures. They also reported that 
they are likely to occur where potential home ranges 
have higher habitat heterogeneity, providing access to 
multiple vital resources, including water, forage, and 
cover. A strong correlation is found between high NDVI 
values and an increased likelihood of conflict events. 
In conflict zones, croplands with abundant vegetation, 
such as dense crops or areas with tall grasses, can serve 
as favourable refuge habitats for wild boars, offering 
protection from predators and human disturbances 
(Barasona et al. 2021). Similarly, a higher likelihood 
of conflict risk was observed to correlate with an 
increasing human modification index. Rutten et al. 
(2019) revealed that wild boars demonstrate remarkable 
behavioural and physiological adaptability in response 
to human-dominated landscapes. This suggests that the 
proximity to these features or land uses may increase 
the likelihood of conflicts between humans and wildlife, 
potentially due to factors such as resource availability, 
human disturbance, or the attraction of wildlife to these 
areas, which is also evident from several HWC studies 
(Sharma et al. 2020; Huang et al. 2018; Markovchick-
Nicholls et al. 2007). These findings highlight the 
importance of considering landscape features and land 
use patterns when understanding and managing HWBC. 
They suggest that conserving and managing forested 
areas while considering the spatial relationships be-
tween human settlements, croplands, built-up areas, 
and wildlife habitats can mitigate conflicts and promote 
coexistence between humans and wildlife. 
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Management implications
The conflict risk map predicted using ensemble model-
ling will have several management implications. This 
model will help managers in identifying probable regions 
for conflict risks to undertake proactive measures. The 
identified high-risk areas can also be selected for targeted 
mitigation measures. For instance, strategic placement 
of fencing or deterrents can be focused on locations 
predicted to be in higher conflict risk zones. As areas 
are prioritised, interventions such as enhanced fencing 
or community-based deterrent strategies and resource 
allocation can be effective. Utilising predictive modelling 
approaches will help develop proactive mitigating strate-
gies that will lead to better management of HWC.
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Supplementary Table 1. Performance of models using different evaluation techniques. The table presents key evaluation 
metrics for model performance, including AUC (Area under the Curve), COR (Correlation), TSS (True Skill Statistics), 
Deviance, Threshold, Sensitivity, and Specificity.

Model AUC COR Deviance Prevalence TSS Kappa Threshold Sensitivity Specificity
RF 0.92 0.74 0.74 0.42 0.70 0.70 0.45 0.85 0.85
MDA 0.82 0.55 1.03 0.42 0.49 0.48 0.42 0.74 0.74
RPART 0.81 0.54 1.05 0.42 0.49 0.48 0.45 0.74 0.74
MAXLIKE 0.80 0.52 1.07 0.42 0.47 0.47 0.43 0.74 0.74
MARS 0.80 0.51 1.13 0.42 0.48 0.47 0.56 0.74 0.74
BRT 0.80 0.51 1.17 0.42 0.46 0.46 0.42 0.73 0.73
GLM 0.75 0.43 1.18 0.42 0.37 0.37 0.44 0.69 0.69
FDA 0.75 0.42 1.18 0.42 0.37 0.37 0.45 0.69 0.69
GAM 0.74 0.44 1.19 0.42 0.40 0.39 0.50 0.71 0.69

Supplementary Table 1 depicts the performance of models using different evaluation techniques. The table presents 
key evaluation metrics for model performance, including AUC (Area under the Curve), COR (Correlation), TSS 
(True Skill Statistics), Deviance, Threshold, Sensitivity, and Specificity.

Supplementary Figure 1. Receiver Operating Characteristic (ROC) curve, depicting the model’s performance.
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Supplementary Figure 2. Relative variable importance for correlation and AUC metrics.

Supplementary Figure 3. Partial Response Curve, showing the relationship between the independent variables and their 
impact on the prediction outcome.


