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Abstract. Escalating concerns about global climate change necessitate investigations into its conse-
quences for the survival of poikilothermic animals like fish. The present study describes histological 
alterations in gill, skin, kidney, liver, and brain tissues of the juvenile Horabagrus brachysoma 
specimens acclimated to 26°C (control) and 36°C for 30 days, and those exposed to dynamic tempera-
ture changes (increased or decreased at the rate of 0.3°C/min from 26°C), the critical thermal maxima 
(CTMax) and critical thermal minima (CTMin). The fish acclimated to 36°C and those exposed to 
CTMax (40.23 ± 0.12°C) and CTMin (14.15 ± 0.10°C) showed severe histological aberrations in gill, 
skin, liver, kidney, and brain tissues. Histological alterations in gill tissues included loss of epithelial 
cells in the branchial arch, thinning of the primary lamellae, and loss of the secondary lamellae. 
Thickening of the epithelial layer (36°C), and desquamation of epithelial cells (CTMax) were the 
histological alterations detected in skin tissues. Alterations in liver tissues included severe conges-
tion with vacuolization and the cloudy appearance of cells and extensive loss of cellular contour. 
Extensive vacuolization with complete flattening of the tubule epithelial cells, distorted appearance 
of tubular lamellae, and marked loss of glomerular tuft were the changes recorded in kidney tissues. 
Brain tissue alterations comprised increased cellularity and vacuolization in the cerebrum (36°C), 
and nodular masses of various sizes in the cerebrum (CTMin). The present study showed that ac-
climation to warm temperature (36°C) and exposure to dynamic temperature changes (CTMax and 
CTMin) cause histopathological alterations in the vital organs of H. brachysoma. The findings of 
the present study can help in monitoring the health of H. brachysoma in the natural environment 
and in culture systems under a climate change scenario.

Introduction

Temperature is an important physical environmental 
factor profoundly influencing lives of all poikilothermic 
animals, including fish. Unfavorable changes in the 
environmental temperature cause stress in fish, influenc-
ing their physiological homeostasis and affecting their 
optimum temperature for growth, reproduction, and 
disease resistance (Pörtner and Peck 2010; Alfonso et 
al. 2021; Islam et al. 2022a). Thermal extremes, both 
maximum and minimum, cause stress in fish altering 
their biochemical processes and cellular architecture 
(Das et al. 2014; Ern et al. 2023). Severe or irrevers-
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ible cellular and histopathological changes in the vital 
organs can seriously affect their normal functions even-
tually leading to the death of fish. Tissue histology is a 
valuable tool for monitoring fish health in aquaculture 
systems and in the natural environment (Saraiva et 
al. 2015; Abbaszadeh and Şişman 2021). Therefore, 
histopathological investigations in relation to such 
environmental protuberances can help understand and 
correlate the physiological and behavioural changes 
observed in fish during stressful conditions (Wolf et 
al. 2015; Phrompanya et al. 2021).
Depending on emission scenarios, global mean surface 
temperatures are expected to rise by 0.9–5.4 °C by 2100, 
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potentially causing an increase in water temperature 
(Pörtner et al. 2019). Climate change is a significant 
stressor in aquatic ecosystems, and freshwater ecosys-
tems are highly vulnerable to global warming (Capon 
et al. 2021) affecting several aquaculture species (Mug-
wanya et al. 2022). Rising freshwater temperatures are 
predicted to affect species’ geographical ranges, disease 
outbreaks, phenology, and survival of fishes (Reid et al. 
2019). Climate change is expected to have a significant 
influence on tropical freshwater fish species (Ficke et 
al. 2007; Li et al. 2022; de Visser et al. 2023), with 
74–81% of them declining and more than half of their 
range becoming endangered with a 2°C rise in global 
temperature (Barbarossa et al. 2021). It is also predicted 
that global climate change may also cause ''surprises'' 
or sudden ecological changes altering the limnological 
characteristics, which may lead to increased incidences 
of fish kills in the coming years (Ficke et al. 2007; 
Panikkar et al. 2022). Several researchers have reported 
fish kills due to rapid temperature changes in freshwater 
bodies (Nair et al. 2021; Phelps et al. 2019; Kangur et 
al. 2016). The present study was therefore undertaken 
to understand the effect of both acclimation to warm 
temperature (36 °C) and short-term dynamic changes 
in water temperature, i.e., critical thermal maxima 
(CTMax) and critical thermal minima (CTMin), on 
the histological alterations in rare and endemic catfish, 
Horabagrus brachysoma (Family: Bagridae).
We used the critical thermal methodology (CTM) to 
investigate the effect of dynamic temperature changes 
on the histology of the vital organs of H. brachysoma. 
CTM is widely used to determine the temperature toler-
ance in fish and to estimate lethal temperatures without 
killing the fish, wherein, fish are exposed to a linear and 
constant rate of temperature increase or decrease until a 
pre-death thermal point is reached, designated as a criti-
cal thermal maximum and critical thermal minimum, 
respectively (Beitinger et al. 2000). The endpoint is 
manifested by the disorganized locomotory movements 
of the fish, indicating the loss of ability to escape the 
situation that could ultimately result in its death (Be-
itinger et al. 2000; Desforges et al. 2023; Conte et al. 
2023). It is suggested that this approach is more relevant 
to temperature variations occurring in natural conditions 
(Bennett and Judd 1992; Terblanche et al. 2011).
Investigations into the effect of fish acclimation to warm 
temperatures have revealed various histological altera-
tions in different tissues. For example, the acclimation 
of the hybrid catfish (♂ Clarias gariepinus × ♀ C. mac-
rocephalus) to 37°C caused gill shortening, severe 
hyperplasia of epithelial cells, and desquamation of the 
gills; hepatocyte vacuolization, nuclei displacement, and 
pyknotic hepatic cells in the liver; peripheral distribution 
of mucus cells and increased epithelial layer thickness 
of the skin (Khieokhajonkhet et al. 2022). The advanced 

fingerlings of Labeo rohita acclimated to 36, 38, and 
40°C exhibited such histopathological changes in the 
gills as primary lamellar hyperplasia, lamellar fusion and 
clubbing of the secondary lamellae; in the liver- disar-
rangement of hepatic cells and vacuolar degeneration; 
in kidneys- degeneration and a complete loss of cellular 
organization, massive vacuolar degeneration of the renal 
tissue; and in the heart- degeneration of the myofibrillar 
layer (Dash et al. 2011). However, research on the ef-
fect of CTMax and CTMin on fish histology is sparse. 
Hernández-López et al. (2018) reported that exposure 
of Sardinops sagax caeruleus to CTMax caused severe 
histological alterations in liver (vacuolated or necrotic 
hepatocytes and infiltration of inflammatory blood cells) 
and kidney (degenerative glomeruli and renal tubules, 
and increased melanomacrophage centers) tissues.
The catfish, H. brachysoma, is propagated as a candidate 
species for aquaculture (Raghavan et al. 2016) and is 
valued as an ornamental fish in India and in international 
trade (Anvar Ali et al. 2007; Sureshkumar 2013). Its 
natural home range is reported in the rivers of southern 
India states, including Kerala (Anvar Ali et al. 2007), 
Karnataka (Kali and Aghanashini) (Bhat 2001), and 
Northern Western Ghats in Maharashtra (Katwate et 
al. 2012). In India, H. brachysoma is considered an 
emerging species for small-scale aquaculture and is also 
caught from the wild for local consumption. Techniques 
for its captive breeding (Padmakumar et al. 2011) and 
mass production (Sahoo et al. 2010, 2014, 2015) are 
successfully established. Earlier studies on H. brachy-
soma revealed its increased heat tolerance and increased 
metabolic rates with acclimation temperatures increas-
ing from 15 to 36 °C, with CTMax ranging from 34.86 
± 0.09°C to 42.79 ± 0.02°C, and the final preferred tem-
perature estimated from the Q10 value ranging between 
31 and 33 °C (Dalvi et al. 2009); the correlation of its 
increased heat tolerance and HSP70 levels with increas-
ing acclimation temperatures (20 and 30 °C) (Dalvi et 
al. 2012); and modulation of its metabolic enzymes and 
cellular stress response (Dalvi et al. 2017). In the present 
study, we investigated histological changes in the vital 
organs such as the skin and gills, (exposed directly to 
the external environment) and such internal organs as 
the liver, kidney, and brain (equilibrated to the external 
environment temperature through blood circulation) of 
the juvenile H. brachysoma specimens acclimated to 
26 (Control) and 36 °C and those exposed to dynamic 
temperature changes (CTMax and CTMin).

Materials and methods

Experimental fish
Juvenile H. brachysoma (average weight 20.72 ± 2.06 g) 
were procured from a local vendor (Aquatic world, 
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Mumbai, India) and transported with proper oxygenation 
to the wet laboratory of the Central Institute of Fisher-
ies Education (CIFE), Mumbai, India. The fish were 
acclimated to the laboratory conditions (26 ± 1 °C) for 
30 days in a circular plastic tank (dimensions: 0.9 m 
diameter × 0.6 m height, capacity 350 L, Plasticrafts 
Group, Mumbai, India), and were fed ad libitum daily 
with live Tubifex worms (Dalvi et al. 2009). The natu-
ral photoperiod of approximately 12 h light: 12 h dark 
was maintained during the acclimation. Water quality 
parameters such as dissolved oxygen (5.8 to 6.3 mg.L-1) 
and temperature (25.8 to 26.1°C) (Merck, Germany), pH 
(6.9 to 7.4) (digital pH meter; Labindia, Mumbai, India), 
free carbon dioxide (negligible), total hardness (60–
80 mg.L-1), ammonia (0.014–0.06 mg.L-1), nitrite (0.001 
to 0.005 mg.L-1) and nitrate (0.05 to 0.06 mg.L-1) were 
recorded following standard procedures (APHA 1998), 
and water was exchanged (10%) manually every day. 
The experiment was conducted with the permission of 
CIFE’s local committee for animal experimentation.

Acclimation and critical thermal studies
Acclimation and exposure to CTMax and CTMin tem-
peratures were carried out as described earlier (Dalvi 
et al. 2009). Briefly, 24 juvenile H. brachysoma were 
equally distributed (6 fish per aquarium) in 4 digital 
thermostatic aquaria (dimensions: 45 cm length × 32 cm 
width × 40 cm height, capacity 52 L, sensitivity ± 0.2°C, 
Suan Scientific Instruments & Equipments, Kolkata, 
West Bengal, India) with the initial water temperature 
maintained at 26 °C. One of the aquaria maintained at 
26 °C was used as the control. For warm acclimation, the 
water temperature in an aquarium was increased at a rate 
of 1°C per day over the ambient water temperature of 
26°C until 36 °C. The fish were maintained at 36 °C for a 
period of another 30 days prior to sampling. During the 
acclimation period fish were fed daily with live Tubifex 
worms ad libitum. Excess worms were removed from 
the experimental aquaria 1 h post-feeding. One-tenth 
of water in aquaria was daily exchanged with the water 
having the temperature like the water in which fish of 
the respective treatment group were kept. Water quality 
parameters, namely, pH, oxygen, alkalinity, nitrogen, 
and ammonia, were measured once every four days in 
each tank. Dissolved oxygen concentration was main-
tained at 5.6 ± 0.5 mg.L−1 throughout the experimental 
period by continuous aeration using a 2 HP centralized 
air blower. For the critical temperature study, another 
set of the fish (6 fish per aquarium) acclimated to 26°C 
for 30 days in two separate thermostatic aquaria was 
exposed to a linear water temperature increase (for 
CTMax) or decrease (for CTMin) at a rate of 0.3°C 
min-1 until the loss of equilibrium occurred in the fish. 
The CTMax and CTMin of the fish acclimated to 26°C 
were 40.23 ± 0.12°C and 14.15 ± 0.10°C, respectively. 

At the end of CTMax and CTMin exposure, the fish were 
transferred to separate tanks with water maintained at 
26°C and allowed to recover for 24 h prior to sampling 
for histology.

Tissue preparation and histology
Following the 30-day acclimation period, three fish 
specimens from the control (26°C) and warm acclima-
tion (36°C) groups, and those exposed to CTMax (40.23 
± 0.12 °C) and CTMin (14.15 ± 0.10 °C) were anaes-
thetized individually with clove oil (50 µL.L-1). The 
gill, skin, liver, kidney, and brain tissues were carefully 
dissected, blotted on blotting paper to remove traces 
of blood clots, fixed in 10% neutral buffered formalin 
(HiMedia, India), dehydrated in different grades of al-
cohol, cleared in xylene, and embedded in paraffin wax. 
Tissues (brain: cerebrum area; kidney: posterior or trunk 
region; skin: dorsal trunk region; gill: vertical sections; 
and liver: whole organ sections including both right and 
left lobes) were sliced into thin sections (7 μm), and 
stained with hematoxylin and eosin, as described earlier 
(Kumar et al. 2016). The stained sections were examined 
using a binocular research microscope (Olympus CX-
31, Japan) equipped with Nikon FX-35DX camera and 
photographs were taken wherever necessary.

Results and discussion

Suitable environmental conditions are essential for 
sustaining optimal physiological functions in poikilo-
thermic animals. Long-term exposure of fish to extreme 
temperature that lies within their tolerance range causes 
stress and brings about physiological and biochemical 
reorganization leading to adaptation (Wendelaar Bonga 
1997; Alfonso et al. 2021; Islam et al. 2022a). However, 
exposure to drastic thermal changes may cause patho-
logical changes in the vital organs by distorting their 
structural integrity and functional processes that may 
prove detrimental for the species survival (Phrompanya 
et al. 2021). In the present study, the fish acclimated to 
26°C (Control) showed normal histoarchitecture of gill 
(Figure 1a), skin (Figure 2a), liver (Figure 3a), kidney 
(Figure 4a), and brain (Figure 5a) tissues. However, the 
fish acclimated to 36°C and those exposed to CTMax 
and CTMin showed alterations in the histoarchitecture 
of the vital organs. During the 24 h recovery period fol-
lowing CTMax and CTMin exposure, the fish displayed 
behavioral changes such as cessation of feeding, erratic 
and sluggish swimming with occasional abrupt swim-
ming hitting the walls of the aquaria, and increased 
surface activity and air gulping.
In our study, the gills of the fish acclimated to 36°C 
showed loss of epithelial cells in the branchial arch; 
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Figure 1. Histology of the gill of H. brachysoma (H and E staining). (a) acclimated to 26°C: normal histoarchitecture (40X); 
(b) acclimated to 36°C: loss of epithelial cells in the branchial arch (LECB), loss of the secondary lamellae (LSL); thinning 
of the the primary gill lamellae (TPL) (20X); (c) acclimated to 36°C: thickening (TSL) and atrophy (ASL) of the secondary 
gill lamellae (80X); (d) exposed to CTMax: congestions (C) and hemorrhages (H) in the branchial arch (40X); (e) exposed 
to CTMax: the damaged secondary lamellae (arrow) (160X); (f) exposed to CTMin: congestion in the primary gill filament 
(arrow) (40X); and (g) exposed to CTMin: congestion in the branchial arch (arrow) (40X) and the primary lamellae (box 
and insert) (160X).
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Figure 2. Histology of the skin of H. brachysoma (H and E staining). (a) acclimated to 26°C: normal histoarchitecture (80X) 
showing alarm / cuboid cell (AC), mucus cells (MC) and epithelium (EP); (b) acclimated to 36°C: epithelial thickening (ET) 
(80X); (c) exposed to CTMax: desquamation of epithelial, mucus and alarm cells (DEMA); and (d) exposed to CTMin: ap-
peared normal (H and E; 80X).

thinning of the primary gill lamellae, and occasional 
loss of the secondary gill lamellae (Figure 1b); and 
thickening and atrophy of the secondary gill lamellae 
(Figure 1c). The gills of the fish exposed to CTMax 
showed congestions and hemorrhages in the branchial 
arch (Figure 1d), and damage to the primary gill fila-
ment with massive destruction of the secondary lamellae 
(Figure 1e), while the gills of those exposed to CTMin 
showed congestions in the primary filament (Figure 
1f and 1g) and the branchial arch (Figure 1g). Along 
with its respiratory functions, the gills also act as heat 
exchangers for heat conduction between the environ-
ment and the fish body and facilitate the exchange of 
ions across the membrane. Drastic and rapid changes in 
water temperature cause the gills to undergo significant 
histological changes, which impact their primary func-
tions (Wendelaar Bonga 1997), leading to passive ion 
effluxes and water intake in freshwater fishes inhibit-
ing ion exchange (Wendelaar Bonga and Lock 1992). 
Higher water temperatures also affect the capacity of 
fish to maintain osmotic balance because they change the 
lipids in their gill cells, which causes cell leakage and 
lowers the effectiveness of salt excretion and osmotic 
balance (Pörtner et al. 2005; Das et al. 2014). Compen-
satory responses of the gills to changes in the external 
environment include hypertrophy and hyperplasia of 

the epithelium (Mallatt 1985). Although the present 
study revealed structural alterations in the gill tissue of 
the H. brachysoma specimens acclimated to 36°C, in 
an earlier study we observed an increase in the oxygen 
consumption rate in the fish acclimated to 36°C (Dalvi 
et al. 2009). Such increased oxygen demand during 
stress compromises the hydromineral balance in fish, 
with high levels of catecholamine and reduction in the 
vascular resistance in the gills by circulating epine-
phrine (Wendelaar Bonga 1997). The increased blood 
flow together with the branchial lamellae distention 
increases the effective respiratory surface area of the 
gills, thereby increasing the surface area for diffusion 
and, also the diffusion rate of water, ions, and even 
larger organic molecules, the process known as the 
osmorespiratory compromise (Wendelaar Bonga 1997; 
Onukwufor and Wood 2020; Wood and Eom 2021). 
Our results agree with those reported earlier for chronic 
exposure to increased temperatures in L. rohita (Dash 
et al. 2011; Islam et al. 2020), Cyprinus carpio (Saber 
2011), Paralichthys olivaceus (Liu et al. 2014), killifish 
(Aphanius dispar) (Akbarzadeh et al. 2014), Nile tilapia 
(Islam et al. 2022b), hybrid catfish (♂C. gariepinus 
×♀C. macrocephalus) (Khieokhajonkhet et al. 2022); 
and for acute thermal exposure in Oreochromis niloticus 
(Phrompanya et al. 2021).
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Figure 3. Histology of the liver of H. brachysoma (H and E staining). (a) acclimated to 26°C: normal histoarchitecture (160X); 
(b) acclimated to 36°C: swelling and vacuolation of hepatocytes (SVH) (160X); (c) acclimated to 36°C: occasional necrosis 
(N) and vacuoles (arrow) (160X), and occasional hemolysis (HL) and necrosis (N) (insert, 80X); (d) exposed to CTMax: severe 
congestion (arrow, 40X; box and insert, 160X); (e) exposed to CTMax: fragmented edges (FE) and degenerated hepatocytes 
(DH) (arrow) (160X); (f) exposed to CTMin: dilated blood vessels (arrow) (40X) with haemolysis (box and insert) (160X); 
and (g) exposed to CTMin: swollen hepatocytes (arrow) (160X).
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Figure 4. Histology of the kidney of H. brachysoma (H and E staining). (a) acclimated to 26°C: normal histoarchitecture 
(160X); (b) acclimated to 36°C: extensive vacuolation (40X); (c) acclimated to 36°C: severe vacuolation (V), flattening of the 
tubule epithelial cell (FT) and loss of glomerular tuft (LG) (160X); (d) exposed to CTMax: vacuolation (V), loss of tubules 
(LT), necrosis of tubules (NT), and glomeruli shrinkage (SG) (160X); (e) exposed to CTMax: invariably dilated blood ves-
sels (160X) (f) exposed to CTMin: ballooning of the blood vessels and markedly thin empty tunica-interna detached from 
the tunica-media (arrow) (160X); (g) exposed to CTMin: vacuolation (V), loss of interstitium (LI), and loss of tubules (LT) 
(160X).
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Like the gills, the skin is also susceptible to changes in 
environmental parameters because of their proximity to 
the external environment. We observed mild thickening 
in the skin epithelial layers of the fish acclimated to 36°C 
(Figure 2b). The skin of the fish exposed to CTMax ap-
peared markedly odious because of the desquamation of 
epithelial cells (Figure 2c), while the skin of those ex-
posed to CTMin did not exhibit any discernible changes 
(Figure 2d). It is reported that there is hypersecretion of 
mucus followed by depletion of mucus cells with dif-
ferentiation of new mucus cells in the branchial region 
of fishes as a compensatory response to various environ-
mental stressors (Mallatt 1985). Khieokhajonkhet et al. 
(2022) reported that the hybrid catfish (♂C. gariepinus 
×♀C. macrocephalus) acclimated to 37°C had increased 
peripheral distribution of mucus cells in the subcutane-
ous skin, and enlarged club cells and melanophores in 
the skin resulting in increased epithelial layer thickness. 
Similarly, increased cellularity in the epithelial layer 
observed in our study indicates the differentiation of the 
new mucus and other cells in the skin of the fish accli-
mated to 36°C. However, acute increase in temperature 
(CTMax) had a detrimental effect on the skin of the 
tested H. brachysoma specimens. Hernández-López et 
al. (2018) reported that external responses of the skin 
of the Pacific sardines (S. sagax caeruleus) exposed to 
acute (CTMax) and chronic heat stress (warm acclima-
tion) were desquamation and mucus production. Yang 
et al. (2022) reported that exposure to mild (24°C) and 
high (28°C) heat stress for one week caused skin dam-
age in Siberian sturgeon (Acipenser baerii), including 
exfoliation and necrotization of the epidermis with 
raised cell debris, a partially broken epidermal layer 
with slight dissociation and epidermal shriveling, and 
a decrease in the number of mucous cells.
Unlike the gills and skin, the liver, kidney, and brain are 
not in direct contact with water. The complete equilib-
rium of the blood and environment temperatures at the 
gills leads to an equally complete thermal equilibrium 
between these essential organs through the circulating 
blood because thermal diffusion is considerably faster 
than molecular diffusion (Hazel and Prosser 1974; Pörtner 
et al. 2005). In our study, the liver of the H. brachysoma 
specimens acclimated to 36°C showed moderate swell-
ing and vacuolization of the hepatocytes (Figure 3b), and 
occasional hemolysis and necrosis (Figure 3c). The liver 
of the fish exposed to CTMax showed severe congestion 
(Fig 3d) with fragmented edges, the hepatocytes were 
markedly degenerated with the cloudy appearance of the 
cells and the extensive loss of cellular contour (Figure 3e), 
while the fish exposed to CTMin showed highly dilated 
blood vessels with haemolysed RBCs (Figure 3f) and 
swollen hepatocytes (Figure 3g). Our results agree with 
those reported earlier for chronic exposure of L. rohita 
(Dash et al. 2011) and hybrid catfish (♂C. gariepinus 

×♀C. macrocephalus) (Khieokhajonkhet et al. 2022) to 
increased temperatures and acute heat exposure of juve-
nile blunt snout bream (Megalobrama amblycephala) 
(Liu et al. 2016; Li et al. 2019), and S. sagax caeruleus 
(Hernández-López et al. 2018). Changes in the liver may 
act as indicators of earlier exposure to environmental 
stressors because the liver is the primary organ respon-
sible for detoxification and is particularly vulnerable to 
damage from stress (Velmurugan et al. 2007). Hepatocyte 
vacuolization is suggested to be a sign of the imbalance 
between the rate of substance production in parenchymal 
cells and the rate of these compounds release into the 
circulatory system (Gingerich 1982). Exposure of M. am-
blycephala to acute temperatures has been reported to 
damage mitochondria, leading to the leaking of reactive 
oxygen species into the cytosol causing oxidative stress, 
suggesting that the imbalance between lipid peroxides 
and the antioxidant system may cause cell dysfunction 
and cell damage (Liu et al. 2016).
In our study, the kidney of the H. brachysoma speci-
mens acclimated to 36°C showed extensive vacuolation 
with complete flattening of the tubule epithelial cells 
(Figure 4b & 4c), distorted appearance of tubular la-
mellae and marked loss of glomerular tuft / capillaries 
(Figure 4c). The kidney of the fish exposed to CTMax 
appeared markedly vacuolar with loss of tubules, oc-
casional areas of necrosis of the tubules, and scattered 
leucocytic infiltration with occasional shrinkage in the 
glomeruli (Figure 4d), and invariably dilated blood ves-
sels (Figure 4e). The fish exposed to CTMin exhibited 
ballooning of the blood vessels and markedly thin empty 
tunica-interna detached from the tunica-media (Fi
gure 4f), vacuolation with large empty spaces and with 
loss of interstitium and tubules, however, glomeruli ap-
peared normal (Figure 4g). Our results agree with those 
reported for P. olivaceus (Liu et al. 2015) and Pacific 
sardine (S. sagax caeruleus) (Hernández-López et al. 
2018) exposed to acute and chronic heat stress, and for 
L. rohita acclimated to increased temperatures (Dash et 
al. 2011). Histological changes in kidneys are suggested 
to be good indicators of environmental contamination 
because the renal tissue is close to the adrenal tissue 
that synthesizes stress hormones such as adrenaline, 
noradrenaline and glucocorticoids that are released dur-
ing stress conditions in animals (Hinton 1993).
In our study, the brain of the fish acclimated to 36°C 
showed increased cellularity and vacuolation in the cer-
ebrum (Figure 5b). The fish exposed to CTMax showed 
empty spaces in the cerebrum (Figure 5c) and blood 
vessels appeared highly dilated (Figure 5d), while those 
exposed to CTMin showed nodular masses of various 
sizes in the cerebrum (Figure 5e), indicating capillary 
thrombosis in the brain tissue. Our results agree with 
those reported for O. niloticus exposed to acute tempera-
ture shocks (Phrompanya et al. 2021). It is suggested 
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that tissue deterioration in specific brain regions may 
cause impairment of specific brain functions as well as 
changes in the physiological and behavioral processes 
of the fish, resulting in such behavioral changes as res-
piratory dysfunctions, loss of equilibrium, and erratic 
swimming (Lakshmaiah 2017).

Conclusion

Overall, the observations of the present study suggest 
that acclimation to 36°C and exposure to CTMax and 
CTMin profoundly affects the histoarchitecture of the 
vital organs of H. brachysoma. The histopathological 
alterations in different vital organs of H. brachysoma 

after exposure to CTMax and CTMin temperatures 
indicate that the aberrations are more apparent during 
exposure to dynamic heat stress than during exposure 
to dynamic cold stress. The alterations observed in the 
histology of the vital organs suggest their contributory 
role in the aberrant behavior of the fish observed during 
exposure to dynamic temperature changes.
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